
INSIDE NIH IMAGE

General Information...2
About this Document...2

Macro Examples, Techniques & Operations..........2
What is a macro and why write one?...................2
Before you begin..3
For the programming beginner.............................3
Macro global vs. local vars..................................3
Putmessage, ShowMessage & Write....................4
Switching and choosing windows........................5
How to input a number or string..........................6
Looping..6
Regions of Interest (ROI).....................................7
Detecting the press of the mouse button..............8
Detecting press of option, shift and control keys.8
Measurement and rUser Arrays............................9
Placing macro data in the "Results" window.......9
Operating on each image in a stack (SelectSlice) 10
Accessing bytes of an image................................11
Reading from disk (importing).............................12
Batch Processing..12
Avoiding a macro dialog box...............................13
TickCount...14
Accessing an image Look Up Table (LUT).........14
Placing time and date into your data....................15
PlotData notes..15
Calling user written pascal from a macro............16

Pascal Examples, Techniques & Operations..........18
Users can use User.p..18
Recommended addition when adding to pascal...18
Returning a value from pascal to a macro............18
Pascal versions of SelectSlice & SelectPic..........19
Putmessage, showmessage & PutmessageWithCancel 19
Reading from disk..21
Memory and pointer allocation............................22
Operating on an Image...23
Getting at the bytes of an image...........................23
Working with two images....................................27
Touching the 4th dimension.................................28

Creating a dialog box...29
Key & mouse..29
Image and text..30
Photoshop plug-ins and debugging......................33

General Information

About this Document

This document is intended for beginners, like myself, who
never studied programming but need to use software and get the
most out of it. For those who would like to correct errors in this
guide please contact Mark Vivino in the NIH Division of
Computer Research and Technology. My email is
mvivino@helix.nih.gov. If you are like me, spending your whole
day writing a graphical user interface is not your way of make a
contribution to the world. You might have an image processing
application that needs doing and don't want to figure out all the
aspects of the Mac Toolbox (or Windows or Motif). You can build
your image processing application into the NIH Image program
and save yourself from a lot of wasted effort. Hopefully, this
manual may help you on your route whether simple (macro) or
complex (pascal). Having freely available and modifiable source
code is not seen often with most commercial packages. This
guide updated 12/28/94, current to Image version 1.56.

Macro Examples, Techniques & Operations

What is a macro and why write one?

A macro is text containing a sequence of calls or routines
which NIH Image interprets and executes. To write a macro, you
can choose "New" then "text window" to create a text window
within NIH Image. You load the macro using "Load Macro". A
rich set of example macro routines is distributed with the NIH
Image program. You can try some of these out and borrow code
from them in order to write your own macro.

Simple macros, such as the one below, are useful utilities to

save time and effort. This macro is an example of a macro which
follows the same operations that could be performed by you from
the NIH Image menus. It's operation is to clear anything outside
of the Region of Interest (ROI) which you draw. Macros can, of
course, be much larger and can include looping, calculations and
basically an entire imaging application.

MACRO 'Clear Outside [C]';
{Erase region outside ROI.}
BEGIN
 Copy;
 SelectAll;
 Clear;
 RestoreRoi;
 Paste;
 KillRoi;
END;

As a general guidline, if you have a highly iterative
operation, prolonged calculation, derivation, modification or
anything else complex you should consider using a pascal routine
for that portion of your coding. The ease of the macro interface
with your code executing at compiled pascal execution rates can
be done with calls to UserCode in your macro.

Before you begin

It should not be hard for you to start writing a macro. You
will want to do several things before you begin. First, go to the
"About Image" file and print the section on macro programming.
This provides you with a complete list of all macro calls. The list
is organized by the Image menus or is categorized as
miscellaneous. After this loacte the macros folder distributed with
NIH Image. Open, load and examine some of the macros. Try
using "Find" from the "Edit" menu on one of the open macros.
"Find" is fairly useful in helping you debug a macro. It allows
you to go to sources of error when you get error messages during
the load or execution of a macro. You may also want to locate a
file called "reference card" in the macros folder. This text file
might be useful for observation while programming a macro.

For the programming beginner

You probably don't need to study programming to write a
macro. Depending on the complexity of your application, you
might be able to pick up everything you need by examining some
of the macros in the macros folder. To some a confusing aspect of
writing macros is understanding what a function is and how it is
used. A function returns a value or a boolean (true/false). In the
example below, nPics is a function which will return an integer
number of pictures open. KeyDown('option') returns a true or
false depending on whether you hold the option key down.

Macro 'Function demo';
begin
{Here is an example use of the nPics function
returning a value}
 showmessage('Number of images open: ',nPics);

{Here is an example use of keydown function
returning a boolean}
 If KeyDown('option') then putmessage('Number of
images open: ',nPics);
end;

One text I recomend skimming through is Pascal
Programming and Problem Solving, by Leestma and Nyhoff,
other texts are listed in the "About Image" section on macro
programming.

Macro global vs. local vars

Just as in pascal, C, or other programming languages, you
can have a local or global variable. A global variable is declared
at the top of the macro file and can be utilized by any procedure
or macro in the file. A local variable is declared in the procedure
or macro in which it is used. For the example macro set below,
"A" and "B" are local to the 'Add numbers' macro. "Answer" is
globally declared and used by both macros.

VAR
 Answer:real;

Macro 'Add numbers';
Var
 A,B: real;
begin
 A := Getnumber('Enter the first number',2.0);
 B := Getnumber('Enter the second
number',3.14);
 Answer := A+B;
end;

Macro 'Show Answer';
begin
 ShowMessage(' The added result is: ',
Answer:4:2);
end;

Putmessage, ShowMessage & Write
PutMessage

PutMessage is perhaps one of the easiest ways to provide feedback to users.
To use putmessage you simply call the routine with the message or string you wish
to give to the user.

PutMessage('This macro requires a line selection');

You can pass multiple arguments with PutMessage if you needed to.

PutMessage('Have a ', 'Nice day');

ShowMessage

ShowMessage allows display of calculations, data, variables or whatever you
caste as a string into the Info window.

Here is a simple example of output to the Info window:

ShowMessage('x1 = ',x1);

You can use the backslash ('\') character to do a carriage return for macros:

ShowMessage('Average Size=',AverageSize:1:2,'\
TotalCount=',TotalCount);

Write

You can also write data or info onto the image window with a macro call to Write or
Writeln.

 Diameter := Width / PixelsPerMM; {in MM.}
 MoveTo(300,10);
 Write('Diameter = ', Diameter:5:2,' mm.');

Switching and choosing windows

There are a number of ways to switch between windows in a
macro. For the most part you will need to use the PidNumber
function to identify a unique ID for that window. Pidnumber is a
function which returns a value. For example you might have:

var
 MyPicID:integer;
begin
 MyPicID := PidNumber;
 Duplicate('Duplicate image');
{some process}
 SelectPic(MyPicID); {To go back to the original}

Here the returned value from the PidNumber function was
assigned to a variable called MyPicID. The variable MyPicID

was then used later on in the macro to select the picture.

As an alternative to SelectPic, you could have used
ChoosePic(MyPicID). This would have selected the picture but
would not have made it the active front window. This is useful
when you flip between many windows, but do not need to
activate the window.

As a second alternative, you could can use
SelectWindow('Window name') to select the window by its title.

How to input a number or string

Making a call to getnumber will allow you to enter a number
into your macro. The GetNumber macro will return a real
number, or if assigned to an integer variable, such as in this
example, it will not pass the decimal digits.

var
 MyGlobalNumber:integer;

macro 'Number input';
begin
 myGlobalNumber:=GetNumber('Enter number
of iterations:',0);
end;

The idea is the same for entering a string

var
 MyString:string;

macro 'String input';
begin

 MyString:=GetString('What name?','Data');
end;

Looping

The NIH Image macro language has the standard set of
pascal loops. This includes "for" loops and "while" loops.
Although close to pascal, the macro language doesn't have
everything as this email shows:

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-
image@soils.umn.edu

>in the "for" command (as in for i= 1 to fred Do) is there a skip
command.
>For example, can I choose to do:
> for i = 1 to fred by 10 DO

The NIH Image macro language is (almost) a subset of Pascal and
the Pascal

FOR statement does not have a BY option. Instead, use a WHILE
loop. For
example:

 i:=1;
 while i<=fred do begin
 {process}
 i:=i+10;
 end;

Regions of Interest (ROI)

Before you start looking at macro ROI's an introduction to
coordinates is worthwhile. See the picture below for a general
guideline. Regions of interest are characterized by 'marching ants'
which surround a selection.

Getting ROI information
GetRoi(left,top,width,height)

You will want to call this macro routine if you need any information about the
current ROI. The routine returns a width of zero if no ROI exists.

ROI creation
SelectAll

The Selectall macro command is equivalent to the Pascal SelectAll(true), which
selects all of the image and shows the ROI's 'marching ants'. See the above
paragraph for pascal code relating to Selectall.

MakeRoi(left,top,width,height)
This is as straight forward as the name implies.

MakeOvalRoi(left,top,width,height)
Not terribly differing to implement from MakeROI. If you want a circular ROI set
width and height to the same value. See the example below.

Altering an existing ROI
MoveRoi(dx,dy)

Use to move right dx and down dy.

InsetRoi(delta)
Expands the ROI if delta is negative, Shrinks the ROI if delta is positive.

Other routines involving ROI's
RestoreROI,KillRoi

These are opposities.

Copy,Paste,Clear,Fill,Invert,DrawBoundary

Detecting the press of the mouse button

The example below shows a macro which operates until the
mouse button is pressed. Button is your basic true or false
boolean and becomes true when the button is pressed.

macro 'Show RGB Values [S]';
var
 x,y,v,savex,savey:integer;
begin
 repeat
 savex:=x; savey:=y;
 GetMouse(x,y);
 if (x<>savex) or (y<>savey) then begin
 v:=GetPixel(x,y);
 ShowMessage('loc=',x:1,', ',y:1,
 '\value=',v:1,
 '\RGB=',RedLUT[v]:1,', ',GreenLUT[v]:1,',
',BlueLUT[v]:1);
 wait(.5);
 end;
 until button;
end;

Detecting press of option, shift and control keys

The macro "KeyDown(key)" (Key = 'option', 'shift', or

'control') returns a boolean true or false. It returns TRUE if the
specified key is down. The example macro below can be run on
any stack, using shift to delay more or control to delay less.

macro 'Animate Stack';
var
 i,delay:integer;
begin
 RequiresVersion(1.56);
 i:=0;
 delay:=0.1;
 repeat
 i:=i+1;
 if i>nSlices then i:=1;
 Wait(delay);
 SelectSlice(i);
 if KeyDown('shift') then delay:=1.5*delay;
 if delay>1 then delay:=1;
 if KeyDown('control') then delay:=0.66*delay;
 if KeyDown('option') then beep;

 ShowMessage('delay=',delay:4:2);
 until button;
end;

Measurement and rUser Arrays

There are a number of arrays in macros, but there are two
varieties the measurement arrays and the rUser arrays. You can
store macro data and results in the rUser arrays. These arrays are
not affected by the Measurement counter (rCount) which works
with measurements arrays such as rMean[rCount], rArea, etc. The
current rCount for these is changed by doing a measurement or
calling SetCounter.

Example of storing data to the rUser arrays:

 rUser1[1]:=SomeNumber;
 rUser2[1]:=SomeOtherNumber;

If you have more than two sets of data which you'd like to
keep, and because there are only two rUser arrays, then you can
access other macro arrays. This includes rArea, rMean, rStdDev,
rX, rY, rMin, rMax, rLength, rMajor, rMinor, and rAngle.
However you will need to be careful because these arrays are
affected by the rCount value and you could write over your data.
An example use of measurement arrays outside the intended use
is a snipet of code from the Export look up table macro:

for i:=0 to 255 do begin
 rArea[i+1]:=RedLut[i];
 rMean[i+1]:=GreenLut[i];
 rLength[i+1]:=BlueLut[i];

 end;

Here rArea, rMean and rLength are used for Red, Green and Blue
instead of area, mean and length.

Placing macro data in the "Results" window

If you have particular information, data, calculated results,
or any type of numeric data which you want to keep, you can
redirect it into the Results window. Use the SetUser label
commands to title your field name. The rCount function keeps the
current index of the measurement counter. Since rUser1 and
rUser2 are arrays, you specify the index of the array with the
rCount value. See below.

macro 'Count Black and White Pixels [B]';
{
Counts the number of black and white pixels in
the current
selection and stores the counts in the User1 and
User2 columns.
}
begin
 RequiresVersion(1.44);
 SetUser1Label('Black');
 SetUser2Label('White');
 Measure;
 rUser1[rCount]:=histogram[255];

 rUser2[rCount]:=histogram[0];
 UpdateResults;
end;

Saving results data to a tab delimeted file

You can also save data from the macro, to a tab delimeted text file by adding
several commands in your macro:

 SetExport('Measurements');
 Export('YourFileName');

Operating on each image in a stack (SelectSlice)

By using a loop (for i:= 1 to nSlices) you can operate on a
series of 2D images. The nSlices function returns the number of
slices in the stack.

macro 'Reduce Noise';
var
 i:integer;
begin
 if nSlices=0 then begin
 PutMessage('This window is not a stack');
 exit;
 end;
 for i:= 1 to nSlices do begin
 SelectSlice(i);

 ReduceNoise; {Call any routine you want,
including UserCode}
 end;
end;

See the series of stack macros distributed with the Image program
for more examples.

Extracting a substring from a string

From reply of Doug Morris <dmorris@bmrl.med.uiuc.edu> on
nih-image@soils.umn.edu

> I have a question about how to "extract" a substring from a
string using
> NIH Image macro language. It doesn't seem to have pascal's
"copy(source,
> index, count)" function implemented at macro language level.

It is possible to work around this particular problem. Below is
an example macro that will allow you to pull a substring out of a
string.
Just cut it out of the mail message and read into image.
{
 An example routine to return a substring from a string in NIH
Image macro.
}
var
 ReturnString:string;

procedure
copystring(SourceString:string,index:integer,count:integer);
begin;
 ReturnString:=SourceString;
 if index > 0 then Delete(ReturnString,0,index);
 Delete(ReturnString,count+1,length(ReturnString)-count);
end;

macro 'test copystring'
var TestString:string;
begin
 TestString:='This is a test';
 copystring(TestString,11,4);
 PutMessage('The Returned String is : ' ReturnString);
end;

Accessing bytes of an image

The macro commands GetRow, GetColumn, PutRow and
PutColumn can be used for accessing the image on a line by line
basis. These macro routines use what is know as the LineBuffer
array. This array is of the internally defined type known as
LineType. Pascal routines such as GetLine use the LineType. If

you plan on accessing 'lines' of the image within your macro, it
would might be worth your while to examine the pascal examples
in the pascal section. After looking at these, you probably will see
how to use the LineBuffer array in a macro.

First look at the definition of LineType. LineType is globally
declared as:

 LineType = packed array[0..MaxLine] of
UnsignedByte;

Naturally, UnsignedByte has been type defined as:

UnsignedByte = 0..255;

The example below is a macro which uses the linebuffer
array. If you are interested in using a macro to get at image data,
this example should be fairly clear.

Macro 'Invert lines of image'
var
 i,j,width,height:integer;
begin
 GetPicSize(width,height);
 for i:=1 to height do begin
 GetRow(0,i,width);
 for j:=1 to width do begin
 LineBuffer[j] := 255-LineBuffer[j];
 end;

 PutRow(0,i,width);
 end;

Reading from disk (importing)

One simple way to load data from disk is to create a window
and dump information to it. An example of this is a macro which
imports files created by the IPLab program. The macro reads the
first 100 bytes from the file into a temporary window. It erases
the window when it is through finding useful header information.

macro 'Import IPLab File';
var
 width,height,offset:integer;
begin
 width:=100;
 height:=1;
 offset:=0;
 SetImport('8-bit');
 SetCustom(width,height,offset);
 Import(''); {Read in header as an image, prompting for file
name.}
 width := (GetPixel(8,0)*256) + GetPixel(9,0);
 height := (GetPixel(12,0)*256) + GetPixel(13,0);
 Dispose;
 offset:=2120; {The IPLab offset}
 SetImport('16-bit Signed; Calibrate; Autoscale');
 SetCustom(width,height,offset);
 Import(''); {No prompt this time; Import remembers the name.}
end;

See the pascal section for examples of reading from disk (non-
image data) to User arrays.

Batch Processing

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-
image@soils.umn.edu

>is there a possiblility to define 'open' access to the file contents
of a
>folder (with, lets say, Images of 2.5 MB size each)? I want to do
a Batch list
>for Background subtraction and contrast enhancement.

It's easy to write a macro to process a series of images in a folder
as
long as the file names contain a numerical sequence such as
'file01.pic',
'file02.pic', 'file03.pic', etc. I have included an example macro that
does
this.

macro 'Batch Processing Example';
{
Reads from disk and processes a set of images too large to
simultaneously fit in memory. The image names names must be
in the form 'image001', 'image002', ..., but this can be changed.
}
var

 i:integer;

begin
 for i:=1 to 1000 do begin
 open('image',i:3);
 {process;}
 save;
 close;
 end;
end;

Avoiding a macro dialog box

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-
image@soils.umn.edu

You should be able to process many files and only have to see one
dialog
box. For example, only one dialog appears when you run the
following macro
as long as 'A', 'B' and 'C' are in the same folder.

macro 'test';
begin
 Open('A');
 Invert;
 Save;
 Close;
 Open('B');

Another way to avoid the dialog box is to use full directory paths
as in
the following example.

macro 'test';

begin
 Open('hd400:images:A');
 Invert;
 Save;
 Close;
 Open('hd400:images:B');
 Invert;
 Save;
 Close;
 Open('hd400:images:C');
 Invert;
 Save;
 Close;
end;

In V1.55, you can use a full folder path [.e.g.,
SaveAs('HD400:My Images:mage001')] and the dialog box will
not be displayed.

TickCount

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-
image@soils.umn.edu

According to "Inside Macintosh", ticks are counted at the rate of
60 per
second. You can varify this by running the enclosed macro and
timing the
interval between beeps.

macro 'TickCount Test';
{"Beeps" every 10 seconds}
 var
 interval,ticks:integer;
begin
 interval:=600;
 ticks:=TickCount+interval;
 repeat
 if TickCount>=ticks then begin
 beep;
 ticks:=ticks+interval;
 end;
 until button;
end;

Accessing an image Look Up Table (LUT)

You can modify the way an image appears by altering the
RedLUT, GreenLUT and BlueLUT. This is simple and
straightforward enough. You can access the RedLUT, GreenLUT
and BlueLUT arrays from both macros and from Pascal.

The pascal definitions are:

LutArray = packed array[0..255] of byte;

RedLUT, GreenLUT, BlueLUT: LutArray;

Here is an example macro which finds any gray or black
components in a color image and sets them to white. It's useful
for seperating certain kinds of medical data.

macro 'Remove Equal RGB [V]';
{Changes only the LUT, removes gray component
from an image}
var
 i,Value:integer;
begin
 for i:=1 to 254 do begin
 If ((RedLUT[i] = BlueLUT[i]) and (RedLUT[i] =
GreenLUT[i]))
 then begin
 RedLut[i] :=255;
 BlueLut[i] := 255;
 GreenLut[i] :=255;
 end;
 end;
ChangeValues(255,255,0); {remove black}
UpdateLUT;
end;

Placing time and date into your data

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-
image@soils.umn.edu

>>Here is a macro that writes the current date and time to a text
window.
>
>Can this macro be modified to write the date and time into the
"Show Results"
>window?

No, but it can be modified to also store results into the text
window. I
have included a macro that does that. Here is what the output
from this
macro looks like:

 Date=94:5:31
 Time=14:45:24
 Area=10000.000
 Mean=80.198

macro 'Write Results to Text Window';
var
 year,month,day,hour,minute,second,dow:integer;
begin
 GetTime(year,month,day,hour,minute,second,dow);
 Measure;
 NewTextWindow('My Results');

 writeln('Date=',year-1900:1,':',month:1,':',day:1);
 writeln('Time=',hour:1,':'minute:1,':',second:1);
 writeln('Area=',rArea[rCount]:1:3);
 writeln('Mean=',rMean[rCount]:1:3);
end;

PlotData notes

From reply of jy@nhm.ic.ac.uk on nih-image@soils.umn.edu

>Does anyone know of an easy way to get the actual points in x,y
coordinates and
>the values at each point from the profile plot data using macros?

Image 1.54 introduced a new command to +/- allow this:

"A command was added to the macro language for making profile
plot data
available to macro routines. It has the form
"GetPlotData(count,ppv,min,max)", where count is the number of
values, ppv
is the number of pixels averaged for each value, and min and max
are the
minimum and maximum values. The plot data values are returned
in a built-in
real array named PlotData, which uses indexes in the range 0-
4095. The
macro "Plot Profile" in "Plotting Macros" illustrates how to use
GetPlotData and PlotData."

[from the changes file]

To help answer your question further....

1. For a count value of n the PlotData array will have meaningful
values
from 0 to n-1 (higher array values are accessible but will contain
old/meaningless results).

2. Count is equal to the line length, in pixels, rounded to the
nearest
integer value. But...

3. Substantially more pixels are usually highlighted by a line
selection,
and this seems to have only an approximate corelation with the
pixels used
by PlotData.

4 The PlotData array contains real-numbers (not integers) which
presumably
are derived from a weighted average of pixels rather than being
the values
of single pixels - even when ppv is 1. Because of this it is not
possible
to relate PlotData values to single locations.

5. My conclusion after some experimentation is that;

after GetLine(x1,y1,x2,y2,lw);
and GetPlotData(count,ppv,min,max);

The following function will probably return the centre of the

location used
to derive PlotData[c]:
 ypos:=y1+(c+0.5)/(count)*(y2-y1);
 xpos:=x1+(c+0.5)/(count)*(x2-x1);

Calling user written pascal from a macro

Image allows you to call by name user developed pascal
routines from a macro which you write. Outlined below are
example steps you can take to achieve this. You can pass into
your pascal procedure up to three extended values. If you don't
have any values to pass than pass a zero or any other value.

Step 1:
Write a macro or macro procedure which calls

UserCode(n,p1,p2,p3). Be sure to pass values for n, p1, p2 and
p3. The example below will call a routine in User.p to add and
display two numbers. Note that n equals 1 in this call, because the
routine calls the 1st UserMacroCode. This is further explained in
step 3.

macro 'Add two values'
var
 NoValue:integer;
 ValueOne,ValueTwo:Real;
begin
 NoValue := 0;
 ValueOne := 2.0;
 ValueTwo := 3.14

UserCode('AddTwoNumbers',ValueOne,ValueTwo,N
oValue);
end;

Step 2:
Write a pascal routine in the User.p module. Again, this

example simply adds two numbers and shows the result in the
Info Window.

procedure AddTwoNumbers (Value1, Value2:
extended);
 var
 str1, str2, str3: str255;
 Result: extended;
begin
 Result := Value1 + Value2;
 RealToString(Value1, 5, 2, str1);
 RealToString(Value2, 5, 2, str2);
 RealToString(Result, 5, 2, str3);
 ShowMessage(Concat('1st number = ', str1, cr,
'2nd number = ', str2, cr, 'Added result = ', str3));
end;

Step 3:
Modify the UserMacroCode procedure to call your pascal

procedure. The UserMacroCode procedure is found at the bottom
of the User.p module. Because you could call differing UserCode
routines, the string you pass into UserCode selects which routine
you would like to call. This example checks to see if you have
passed the string 'AddTwoNumbers'.

 procedure UserMacroCode (str: str255; Param1,
Param2, Param3: extended);
begin

 MakeLowerCase(str);
 if pos('addtwonumbers', str) <> 0 then begin
 AddTwoNumbers(Param1, Param2);
 exit(UserMacroCode);
 end;
 ShowNoCodeMessage;
end;

Step 4:
Compile your modified version of Image. Load your macro

and execute away. Shown below is the result of the entire
example.

Pascal Examples, Techniques & Operations

Users can use User.p

The User.p module is a good candidate for the placement of
pascal source code which you develop. Since the User.p module
is strategically placed in the build order below other modules you
can call just about any routine in the rest of the project. Be sure
to add the module name which contains the routine you are
calling to the uses command in User.p

uses
 QuickDraw, Palettes, PrintTraps, globals, Utilities, Graphics; <=== add
module name here if you need to. Example would be File1, File2 or any
other unit.

Recommended addition when adding to pascal

If you plan on modifying any of the pascal units, I would
personally recommend that you add two comment lines to each
and every pascal modification that you do. These are:

{Begin Modification}
YourModification;
{End Modification}

You won't regret it later when you go through code you
wrote a year or two ago, or if you try and read somebody else's
code. It is easy to use the find utility to find your old or other
peoples modifications by searching on "begin modifications'.

Returning a value from pascal to a macro

One method for returning a calculated value from a pascal
routine back into a macro is to use the rUser1 or rUser2 arrays.

You can return real numbers and many of them if you need too.

In Pascal have:

User1^[1] := MyReturnValue;

In the macro have:

ReturnedValue := rUser1[1];

Or if you desire seeing the output in the results window you could
have a macro like this:

Macro 'Show table';
begin
 SetOptions('User1');
 SetPrecision(3);
 SetCounter(5);
 SetUser1Label('My 5 calc values');
 ShowResults;
end;

Pascal versions of SelectSlice & SelectPic

SelectSlice is available directly in pascal. You might set
something up like the following:

if Info^.StackInfo <> nil then
 SliceCount := Info^.StackInfo^.nSlices
else
 SliceCount := 1;
for SliceNumber := 1 to SliceCount do begin
 SelectSlice(SliceNumber);

For SelectPic you might copy this code (taken from macros
source file) and pass the PictureNumber to the routine (i.e. for
PictureNumber:=1 to nPics):

procedure SelectImage (id: integer);
begin
 StopDigitizing;
 SaveRoi;
 DisableDensitySlice;
 SelectWindow(PicWindow[id]);
 Info :=
pointer(WindowPeek(PicWindow[id])^.RefCon);
 ActivateWindow;
 GenerateValues;
 LoadLUT(info^.cTable);
 UpdatePicWindow;
end;

Putmessage, showmessage & PutmessageWithCancel
PutMessage

PutMessage is perhaps one of the easiest ways to provide feedback to users.
To use putmessage you simply call the routine with the message or string you wish
to give to the user.

PutMessage('Capturing requires a Data Translation or SCION
frame grabber card.');

You can pass multiple arguments with PutMessage. Doing this is a bit different is
Pascal and macros.

PutMessage(concat('Have a ', 'Nice day'));

or even something like:

PutMessage(concat('A disastrous bug occurred at: ',
Long2Str(BigBadWolf)));

PutMessageWithCancel
PutMessageWithCancel allows you to choose the path you might want to take

in your code. Unlike putmessage, it allows you to press a cancel button. This might
indicate that you should exit your procedure, such as in this example:

var
 item: integer;
begin
item := PutMessageWithCancel('Do you really want to do this
operation?');
if item = cancel then
 exit(YourProcedure);

ShowMessage
ShowMessage allows display of calculations, data, variables or whatever you

caste as a string into the Info window.

ShowMessage(CmdPeriodToStop);

or more involved:

ShowMessage(concat(str1, ' pixels ', cr, str2, ' seconds', cr, str3, '
pixels/second', cr, str));

How to input a number

function GetInt (message: str255; default: integer;
var Canceled: boolean): integer;
function GetReal (message: str255; default:
extended; var Canceled: boolean): extended;

You probably don't want to develop an entire dialog routine
just to pass a number into your procedure from the keyboard.
Fortunately, you don't have to. A default dialog exists for getting
integers and real numbers.

var
 EndLoopCount:integer;
 WasCanceled:boolean;
begin
....{rest of code}

 EndLoopCount :=0; {a default}
 EndLoopCount := GetInt('Enter number of
iterations:',0,WasCanceled);
 if WasCanceled then
 exit(YourProcedureName);

Reading from disk

From disk to macro user arrays:

If you have tab delimited data which you want loaded into
the macro User arrays, you can easily open the data with this
routine. If you have more than two columns of data then use one
or more of the other macro arrays. To use this routine copy it into
User.p, set it up as a UserCode call and recompile Image. You
have to add File2 (File2.p contains GetTextFile) to the Uses
clause at the beginning of User.p. Note that this routine has been
changed for version of Image 1.54 and above.

procedure OpenData;
var
 fname: str255;
 RefNum, nValues, i: integer;
 rLine: RealLine;
begin
if not GetTextFile(fname, RefNum) then
 exit(OpenData);
InitTextInput(fname, RefNum);
i := 1;
while not TextEOF do
 begin
 GetLineFromText(rLine, nValues);
 User1^[i] := rLine[1];
 User2^[i] := rLine[2];
 i := i + 1;
 end;
end;

If you want to see the data, take a look at the macro above in
the section on returning a value from pascal to a macro.

To your own arrays:

The routine is just as applicable to those who wish to read
data from disk into arrays of their own, and not the user arrays. If
you have your own large arrays, you will need to allocate
memory for the pointers. An example of this is shown in the
section "Memory". You can open data to as many arrays as you
allocate by replacing User1^[i]. Example:

while not TextEOF do begin
 GetLineFromText(rLine, nValues);
 xCoordinate^[i] := rLine[1];
 yCoordinate^[i] := rLine[2];
 zCoordinate^[i] := rLine[3];

Memory and pointer allocation

Show below is an example of dynamic memory allocation. If
you plan on using a large array then you need to allocate memory
for the task. You should free the memory when done.

Here is an example of allocating memory for pointer arrays in
User.p:

{User global variables go here.}
const
 MyMaxCoordinates = 5000;

type
 CoordType = packed array[1..MyMaxCoordinates]
of real;
 CoordPtr = ^CoordType;

var
 xCoordinate, yCoordinate, zCoordinate: CoordPtr;

procedure YourAllocationCode;
begin
 xCoordinate :=
CoordPtr(NewPtr(SizeOf(CoordType)));
 yCoordinate :=
CoordPtr(NewPtr(SizeOf(CoordType)));
 zCoordinate :=
CoordPtr(NewPtr(SizeOf(CoordType)));
 if (XCoordinate = nil) or (yCoordinate = nil) or
(zCoordinate = nil) then begin
 DisposPtr(ptr(xCoordinate));

 DisposPtr(ptr(yCoordinate));
 DisposPtr(ptr(zCoordinate));
 PutMessage('Insufficient memory. Use get info
and allocate more memory to Image');
 end;
end;

If you don't need the pointer anymore you can free memory using
the DisposPtr call.

Operating on an Image

The global variables below relate directly to handling of
images. The entire PicInfo record is not displayed. The actual
record contains a number of other useful image parameters and
can be seen in the globals.p file of the image project. Familiarity
with the data structure is advisable to those who plan on
modifying or operating on the image in any manner.

type
 PicInfo = record
 nlines, PixelsPerLine: integer;
 ImageSize: LongInt;
 BytesPerRow: integer;
 PicBaseAddr: ptr;
 PicBaseHandle: handle;
 {many others covered, in part, in other
sections}
 end;

 InfoPtr = ^PicInfo;

var
 Info: InfoPtr;

Using this global structure allows for the simple use of

with Info^ do begin
 DoSomethingWithImage;
end;

Getting at the bytes of an image

Any number of techniques can be used to access the image
for use or modification purposes. Several techniques and
examples are listed below. The choice for which to use largely
depends upon the application at hand.

Pascal routines such as GetLine use the LineType. First look at
the definition of LineType. LineType is globally declared as:

 LineType = packed array[0..MaxLine] of
UnsignedByte;

Naturally, UnsignedByte has been type defined as:

UnsignedByte = 0..255;

Pascal Technique one: Use Apple's "CopyBits" to wholesale
copy a ROI, memory locations, or an entire image. Example's of
CopyBits can be seen in the Image source code Paste procedure,
some of the video capture routines and many others.

Pascal Technique two: Use ApplyTable to change pixels from
their current value to pixels of another value. You fill the table
with your function. The simple example below, which is extracted
from DoArithmetic, would add a constant value to the image. The
index of the table is the old pixel value and tmp is the new pixel
value. With ApplyTable you don't have to work with a linear
function like adding a constant. You basically can apply any
function you like. Of course, you would want to always check
and see if you are above 255 or below zero and truncate as
needed. The actual ApplyTable procedure calls assembly coded
routines in applying the function to the image.

Technique 2 example

procedure SimpleUseOfApplyTable;
 var
 table: LookupTable;
 i: integer;
 tmp: LongInt;
 Canceled: boolean;
begin
 constant := GetReal('Constant to add:', 25,
Canceled);
 for i := 0 to 255 do begin
 tmp := round(i + constant);
 if tmp < 0 then
 tmp := 0;
 if tmp > 255 then
 tmp := 255;
 table[i] := tmp;
 end;

 ApplyTable(table);
end;

Aside from "doing arithmetic" such as adding and
subtracting, the AppyTable routine is used by Image to apply the
Look Up Table (LUT) to the image. Changing the LUT, such as
by contrast enhancement or using the LUT tool, doesn't change
the bytes of the image until the menu selection "Apply LUT" is
selected from the Enhance menu.

Technique Three:

A: Use a procedure such as GetLine to move sequentially down
lines of the image. You can access each line as an array. Compiled
pascal is obviously much than a macro at doing this. In addition,
your macro can call the faster compiled pascal code.

B: Use the Picture base address, offset to current location, and
Apple's Blockmove to access individual lines of the image.
Again, each line can be treated as an array allowing access to
individual picture elements. Examples below.

First look at the definition of LineType. LineType is globally
declared as:

 LineType = packed array[0..MaxLine] of
UnsignedByte;

Naturally, UnsignedByte has been type defined as:
UnsignedByte = 0..255;

For the technique 3 examples you can either:

1) Deal with the entire image and find it's width and height as:
with info^.PicRect do begin
 width := right - left;
 height := bottom - top;
 vstart := top;
 hstart := left;
 end;

2) Deal with just the ROI that you have created and use:
with Info^.RoiRect do begin
 width := right - left;
 RoiTop := top;
 RoiBottom := bottom;
 RoiLeft := left;
 RoiRight := right;
 end;

It is often useful to have your routine automatically define
the entire image as the area which you will operate on. To
automatically select the image you might do the following:

var
 AutoSelectAll: boolean;
begin
AutoSelectAll := not info^.RoiShowing;
if AutoSelectAll then
 SelectAll(false);

The false parameter is used to make an invisible ROI rather
than the visible 'marching ants' typified by ROI selections. By
first checking if an ROI exists, this code prevents overwrite of
your specific ROI.

Technique 3A example

See specific examples in the procedure ExportAsText,
DoInterpolatedScaling and others. See also the procedure
GetLine.

procedure AnyOldProcedure;
 var
 width, hloc, vloc: integer;
 theLine: LineType;
begin
 with info^.RoiRect do begin
 width := right - left;
 for vloc := top to bottom - 1 do begin
 GetLine(left, vloc, width, theLine);
 for hloc := 0 to width - 1 do begin
 DoSomethingWithinTheLine i.e.
TheLine[hloc]
 end;
 end;
 end;
end;

Technique 3B example

This prolonged example will perform the same function as
the 3a. It may or may not be easier for you to see how it
functions, but should let you see how GetLine can do the job with
a lot less programming. As usual some of the variables are seen in
the globally declared PicInfo record.

procedure AnotherOldProcedure;
var
 OldLine,NewLine: LineType;
 SaveInfo: InfoPtr;
 p, dst: ptr;
 offset: LongInt;
 c,i: Integer;
begin
SaveInfo := Info;
with info^.PicRect do begin
 width := right - left;
 height := bottom - top;
 vstart := top;
 hstart := left;
 end;
if NewPicWindow('new window', width, height)
then
 with SaveInfo^ do begin
 offset := LongInt(vstart) * BytesPerRow + hstart;
 p := ptr(ord4(PicBaseAddr) + offset);
 dst := Info^.PicBaseAddr;
 while i <= height do begin
 BlockMove(p, @OldLine, width);
 p := ptr(ord4(p) + BytesPerRow);

 while c <= Saveinfo^.pixelsperline do
begin
 NewLine[c] := OldLine[c] {+ or -??-find a
pixel and do what you want}
 end;
 BlockMove(@NewLine, dst, width);
 dst := ptr(ord4(dst) + width);
 end; {while i <= height}
 end; { with SaveInfo^}
end;

 The 3b example is an oversimplification of the function
duplicate in the image project. It usually is a good idea to first
create a new window to move your information to. The
NewPicWindow procedure can do this. The dst pointer can point
into the new windows memory.

Working with two images

If you want to work with two images in pascal, using the
data from one to effect the other image, you could set up
something like the following code. You can easily work with two
InfoPtr's to do the job. You might pass the picture number from a
macro for convenience

SrcInfo := Info;
DestPic := Trunc(FinalImage);
Info :=
pointer(WindowPeek(PicWindow[DestPic])^.RefCo
n);
DstInfo := Info;{assign it to DstInfo}
 for vloc := RoiTop to RoiBottom - 1 do begin
 Info := SrcInfo;
 GetLine(RoiLeft, vloc, width, CurLinePtr^);

{Do something with the data and put the data to
the other window}
 NewLinePtr^[hloc] :=
CurLinePtr^[hloc]*myfactor

 Info := DstInfo;
 PutLine(RoiLeft, vloc, width, NewLinePtr^);

Touching the 4th dimension

If you have multiple stacks of images which all relate to
each other in some manner, you can load them all into memory
for calculations. A program such as SpyGlass is useful for
viewing this type of data, but it may not provide you with the
means for calculating terribly much. If you wish to have a unique
calculated value, or any type of value, for each point in each stack
you could use Image and set something up like the below. Make
sure you use Long integers for just about everything of the integer
type. This routine should work with stacks of differing sizes
loaded (i.e. one stack could be 200x200x5 and others might be
256x256x10 and so on).

{Set up multiple for loops for nPics and each
SliceCount}
for PictureNumber := 1 to npics...
{You must find the previous data offset for the
final array}
CurrentInfo := Info;
PreviousEndOfData := 0;
for i := 1 to PictureNumber - 1 do begin
 TempInfo :=
pointer(WindowPeek(PicWindow[i])^.RefCon);
 Info := TempInfo;
with Info^.PicRect do begin
 Previouswidth := right - left;
 Previousheight := bottom - top;
 end;
 if Info^.StackInfo <> nil then
 PreviousSliceCount := Info^.StackInfo^.nSlices

else
 PreviousSliceCount := 1;
 BytesUsed := PreviousSliceCount * PreviousWidth
* PreviousHeight;
 PreviousEndOfData := PreviousEndOfData +
BytesUsed;
end;
Info := CurrentInfo;
{Find how many slices in the current pic}
if Info^.StackInfo <> nil then
 SliceCount := Info^.StackInfo^.nSlices
else
 SliceCount := 1;
For SliceNumber := 1 to SliceCount
{Set up rest of the for loops here. The usual, up to
hloc & vloc}
{put those here}
{Now compute a unique array offset}
ArrayOffset := PreviousEndOfData + (SliceNumber
- 1) * LongInt(width) * height + LongInt(width) *
longInt(vloc) + LongInt(hloc);
{Finally store your calculation into a unique
location}
MyHugeArray^[ArrayOffset] :=
SomeCalculatedValue;

Creating a dialog box

Get
function GetDNum (TheDialog: DialogPtr; item:
integer): LongInt;
function GetDString (TheDialog: DialogPtr; item:
integer): str255;
function GetDReal (TheDialog: DialogPtr; item:
integer): extended;

Set
procedure SetDNum (TheDialog: DialogPtr; item:
integer; n: LongInt);
procedure SetDReal (TheDialog: DialogPtr; item:
integer; n: extended; fwidth: integer);
procedure SetDString (TheDialog: DialogPtr; item:
integer; str: str255);
procedure SetDialogItem (TheDialog: DialogPtr;
item, value: integer);

Dialogs are a good way to handle user I/O. If you can't get
by with the set of dialogs in Image you could add one of your
own. They can be used to set parameters or give options to the
user. Several example dialogs in Image are the preferences dialog
box and the SaveAs dialog. The template for dialog boxes are in
the Image.rsrc file under DLOG and DITL. The DITL resource is
for creation of each dialog item in the DLOG. Naturally, each
item in the dialog template has a reference integer value
associated with it. This allows you to keep track of what you are
pressing or which box you are entering information into.

To handle the dialog to user I/O, you need to have a tight
loop checking what is being pressed or entered. If the user is
entering a number or string you need to retrieve it with one of the
GET dialog functions. Likewise, you can pass information or turn
off a button with the SET procedures. The basic form for a dialog
loop appears below:

mylog := GetNewDialog(130, nil, pointer(-1)); {retrieve the dialog box}
Do default SET's here
OutlineButton(MyLog, ok, 16);
repeat
 ModalDialog(nil, item);
 if item = SomeDialogItemID then begin
 Get or Set something
... lots of if statements to check which item is pressed
until (item = ok) or (item = cancel);
DisposDialog(mylog);

Key & mouse

function OptionKeyDown: boolean;
function ShiftKeyDown: boolean;
function ControlKeyDown: boolean;
function SpaceBarDown: boolean;

It is fairly common for a menu selection to have several
possible paths to follow. The selection process can be dictated via
use of simple boolean functions. For the most part they are self
explanatory. Holding the option key down when selecting a menu
item is the most common way to select a divergent path. Your
routine need only execute the function to test the key status.

 if OptionKeyDown then begin
 DoSomething;
 end
else begin
 DoSomeThingElse;
 end;

CommandPeriod

function CommandPeriod: boolean;

The CommandPeriod function is used when you want to interrupt execution of
a procedure. For example you might include the following bit of code in a prolonged
looping routine that you write:

if CommandPeriod then begin
 beep;
 exit(YourLoopingProcedure)
 end;

Mouse button
Apple has supplied several mouse button routines such as the true or false button
boolean. It's functionality is the same as in the macro language.

Function Button:boolean;

The button functions are explained in Inside Mac

Image and text

There are a number of ways to handle text with Image. If
you are working in the context of macros, then a text window
should handle most of what you want to do. Copy and paste
functions work with the text window. Sample macros, such as the
example under SelectPic and Selectwindow in the macros section
above, show how to handle the majority of text data handling
needs.

If your needs are larger, or if you are considering extensive
data to disk handling, then you should consider using the
textbuffer pascal routines described below. You can use these
routines to export as text all the data you can possibly fill memory
with. These are NOT connected with the text window routines,
which are seperately seen in the Text.p file.

Global declarations
const
 MaxTextBufSize = 32700;
type
 TextBufType = packed array[1..MaxTextBufSize] of char;
 TextBufPtr = ^TextBufType;
var
 TextBufP: TextBufPtr;
 TextBufSize, TextBufColumn, TextBufLineCount: integer;

Other useful definitions include:
 cr := chr(13);
 tab := chr(9);
 BackSpace := chr(8);
 eof := chr(4);

Dynamic memory allocation for the textbuffer (under Init.p) sets up a non-
relocatable block of memory.

TextBufP := TextBufPtr(NewPtr(Sizeof(TextBufType)));

To clear the buffer set TextBufSize equal to zero. Use TextBufSize to keep
track of what data within the textbuffer is valid. Anything beyond the length of
TextBufSize is not useful. Many Apple routines, such as FSWrite, require the
number of bytes be passed as a parameter.

Text buffer utilities
Some of the utilities associated with the textbuffer include:

procedure PutChar (c: char);
procedure PutTab;
procedure PutString (str: str255);
procedure PutReal (n: extended; width, fwidth: integer);
procedure PutLong (n: LongInt; FieldWidth: integer);

Expansion of PutString may help in the understanding of the functionality involved:
procedure PutString (str: str255);
 var
 i: integer;
begin
 for i := 1 to length(str) do begin
 if TextBufSize < MaxTextBufSize then
 TextBufSize := TextBufSize + 1;
 TextBufP^[TextBufSize] := str[i];
 TextBufColumn := TextBufColumn + 1;
 end;
end;

An example call sequence which places text into textbuffer might look something
like:

PutSting('Number of Pixels');
PutTab;
PutString('Area');
putChar(cr);

To Save the textbuffer, the procedure SaveAsText can be used after a
SFPPutfile to FSWrite data to the disk or other output.

Saving a text buffer
To Save the textbuffer, the procedure SaveAsText can be used after a

SFPutfile. SaveAsText will FSWrite data to the disk. SFPutfile shows the standard
file dialog box and FSWrite (within SaveAsText) does the actually saving to disk.

procedure SampleSaveBuffer;
 var
 Where: point;
 reply: SFReply;
begin
 SFPutFile(Where, 'Save as?', 'Buffer data', nil, reply);
 if not reply.good then
 exit(SampleSaveBuffer);
 with reply do
 SaveAsText(fname, vRefNum); {this will handle the
FSWriting}
end;

Photoshop plug-ins and debugging

Plug-in Advantages

Can be written C
Work with other programs besides NIH Image
Work with the off-the-shelf versions of NIH Image

Plug-in Disadvantages

Has to be written in C
Hard to debug
Does not have access to Image's internal data structures and
routines

Debugging:

From Scott Wurcer <Scott.Wurcer@analog.com> reply on nih-
image@soils.umn.edu

For simple plug-ins you can create a dialog that puts information
into user
items via SetIText in response to a button or whatever. You can
also pause and
restart your code via a few buttons. This allows you to run your
plug-in stop
and check on internal variables or other items, and then proceed.
You can
usually converge on a simple problem in a few iterations. Then
throw out the
unneeded dialog items when you are done.

From davilla@marimba.cellbio.duke.edu (Scott Davilla) reply on
nih-image@soils.umn.edu

 The best way to debug a plug-in is with MacsBug (yes
assembly).
While I have hear the one can debug extension type code with
SourceBug,
I've never tried. The problem with extension type code is that
most
debuggers depend on symbolic definitions based on code that is
compiled
and linked into an application (everything is very well defined).
With
extension type code, transfer into it is based on a blind jump to
the
address of the plugin code (that gets loaded "manually" ie see the
NIH
Image modual 'plugins.p'). Global variables are a big no no unless
you
are clever with setting up the plug-in (see the apple tech note on
standalone code).

From Carl.Gustafson@cbis.ece.drexel.edu (Carl Gustafson) reply
on nih-image@soils.umn.edu

TMON or MacsBug.

Seriously, you may want to write a simple program that loads the
code
resource from the plugin, creates a parameter block, and then
jumps to the
plugin's entry point. None of this is for the faint of heart.

